Liab

Linux in a Box

User’s Manual for the

nanoLIAB

microprocessor board

Version 00.02, November 2006

This document describes the use of the nanoLIAB
microprocessor board. An introduction to the LIAB
(Linux In A Box) concept is given together with a de-
scription on how to get the microprocessor board up
and running. Procedures for the development of soft-
ware and hardware extensions are also given.

Please also consult the accompanying nanoLIAB CD-
ROM for software distribution and schematics. Note
that all parts of the nanoLIAB hardware and LIAB
bootloader is copyright of LIAB ApS.

LIAB ApS

Ostre Allé 6
DK-9530 Stgvring
TIf: +45 98 37 06 44
mail: info@iab. dk
http://ww. liab. dk

2 LIAB ApS: nanoLIAB: User’s Manual

in

Liab NOTICE: Liab

The information in this document is subject to change without notice. Further,
the software and documentation are provided "as is" without warranty of any
kind including, without limitation, any warranty of merchantability or fitness
for a particular purpose. Even further, LIAB ApS does not guarantee or make
any representations regarding use or the result of the use of the software, hard-
ware or written material in terms of correctness, accuracy, reliability or other-
wise.

Contents

0 Editorial Notes (read this first)

1 Introduction
1.1 TheConcept e

2 The nanoLIAB Hardware
2.1 The nanoLIAB Microprocessor Board
2.2 Board Layout,
221 PowerSupply
2.2.2 Standard Connectors P2-P5
2.2.3 LEDsand Switches
2.24 Pin Headers JP1todP3

3 Get your Board Up and Running
3.1 RequiredItems

4 The LIAB Distribution
4.1 Installing the Distribution
4.2 Installing the Cross Compiler
4.3 Contents of the Distribution
4.4 Demo program forthe LIAB
4.5 Loading the nanoLIAB Module
4.6 The Board Control Program: nanoctr!l
4.7 A demo program using the module nanonod

5 The Boot Loader
5.1 Three Dots Received
5.2 NoDots Received

10
10
12
13
13
14
14

16
16
17
17
19

22
22
22
23
24
26
27
28

4 LIAB ApS: nanoLIAB:

5.3 Download of Binary Images

6 MTD and JFFS2
6.1 Memory Technology Devices, MTD
6.2 dJournalling FLASH File System 2, JFFS2

Bibliography
Links
A Using cu as terminal emulator

B Schematics and Layout
nanoLIAB: Block diagram
nanoLIAB: Powersupply
nanoLIAB: Reset and Oscillators
nanoLIAB: CPU, FLASH and SDRAM memory
nanoLIAB: CPU PIO A and B, serial, RTC, Audio
nanoLIAB: CPU PIO C and D, USB, LEDs, switches
nanoLIAB: Ethernet PHY

User’s Manual

33

........ 34
........ 35

36

37

38

0. Editorial Notes (read this first)

This document describes a small but yet powerful computer system called the
"nanoLIAB".

For the impatient user: If you are eager to experience the features of the
Linux system on the nanoLIAB board, plug it into your computer as described
in chapter 3.

Notational conventions: Throughout the manual, it is assumed that a host
PC running the Linux operating system is used for the communication with
the nanoLIAB system. Screen dumps and examples of human interaction are
printed using fixed-spaced typewriter letters:

PCSI X conformance testing by UN FI X

Page- cache hash table entries: 16384 (order: 4, 65536 bytes)
CPU. Testing wite buffer: pass

Li nux NET4.0 for Linux 2.6

The following two prompts signify that the user is interacting with the host PC
directly, either as normal user ("user @ost $") or as superuser ("user @ost #"):

user@ost$ I's

< files on the host PC >

user @ost$ su

Password: < enter root password for the host PC
user @ost #

user @ost# < press ctrl-D >
user @ost $

Using either a serial communication program like "cu" or a network terminal
program like "t el net ", you may communicate with the nanoLLIAB system. To
signify this, the prompt "r oot @i ab#" will be used:

user@ost$ telnet liab

6 LIAB ApS: nanoLIAB: User’s Manual

Trying 192.168. 1. 180...
Connected to |iab.

Iiab | ogin: root

password: < enter root password for the LI ABARMD200 >
root @iab# |s

< files in /root directory of the LI ABARMD200 >

The root password for the nanoLLIAB board can be found in the covering letter.

1. Introduction

The Linux In A Box (LIAB for short) project was started in the summer of 1998
at the Institute of Electromagnetic Systems at the Technical University of Den-
mark, DTU. The aim was to develop a small microprocessor platform feasible
of performing control and data acquisition task in relation to an antenna mea-
surement facility. A prototype and the first generation of the LIAB board were
developed at DTU.

In the fall of 2000, all activities were moved to the Danish company "LIAB ApS",
a company focused on developing single board computers running the Linux
operating system.

All parts of the hardware and bootloader software are copyright of LIAB ApS.
However, the hardware and most of the software are open-sourced. For the hard-
ware this means that everybody gains full insight in all schematics and PCB de-
signs. Similarly, everybody have full insight in the patches for the Linux kernel
and images for RAM disks. You are free to distribute the full documentation of
the hardware and source codes of software, as long as you do not make changes
to either parts. However, you may distribute changes and contributions to the
LIAB project, but you must clearly mark which parts are yours and which are
part of the distributions from LIAB ApS. If you sell a product that uses the
LIAB bootloader or if you develop a product using the bootloader for use by, or
on behalf of a commercial entity, LIAB are entitled to a royalty fee. Additionally,
LIAB should also be compensated if products using the bootloader is treated as

proprietary, thus enabling a competitive advantage to a company. Please contact
LIAB ApS for more details.

1.1 The Concept

During the conceptual phase of the development of microprocessor-based control
systems it is often recognized that the task of developing software takes up a
major part of the total time needed. A mean to reduce the extent of the software
task is to use an operating system (OS). Choosing the open-sourced operating
system Linux for a project will not only keep the basic cost of the software at a
reasonable level (that is, no cost at all!), but the software development process

8 LIAB ApS: nanoLIAB: User’s Manual

will also benefit from the vast amount of applications written for Linux. Due to
its widespread use, drivers for all sorts of hardware can be found on the Internet
and the programming environment is well documented, both in books, [1] [2] [3]
[4] [5], but also in numerous READMVE- , FAQ- (Frequently Asked Questions) and
HOMO- files on the Internet. On top of that, programmers with experience in
the UNIX operating system may easily migrate to the Linux, since in fact Linux
is yet another clone of the UNIX OS. In particular, classical textbooks on UNIX,
[6] [7] [8] [9] apply almost directly to Linux.

The Linux project was started in 1991 by Linus Torvals and for a long period
only the Intel i386 processor architecture was supported. However, Reduced
Instruction Set Computer (RISC) processors have gained considerable use, an
efforts have been made to port Linux to such processors.

The ARM (Advanced RISC Machine) processors are widely used in mobile phones
since these posses high performance, low power consumption and low cost. High
end ARM processors (ARM72x, ARMD2X) contain a memory management units
(MMU) together with cache systems. Such processors are well suited for the
Linux operating system. Specifically, the Atmel AT91RM9200 microprocessor
containing a ARM920 core has been used to create the nanoLIAB series micro-
processor boards.

Based on the AT91RM9200, the nanoLIAB microprocessor board employs a hard-
ware structure which allows fast system prototyping and a variety of custom
interfacing possibilities. The board is a self contained, fully functional Single
Board Computer (SBC) with three interfacing connectors in form of pin-headers.
This allows the main microprocessor board to be mounted on different base-
boards with various interfacing and on-board features. With reference to Fig. 1.1
the nanoLIAB microprocessor board is identified as the top board.

Currently, only a bread board for experimental use is available from LIAB. How-
ever, it is expected that more application specific baseboards will follow. These
could include a multimedia baseboard, featuring graphics and camera systems,
and a baseboard for industrial controls equipped with relays and digital and
analog I/O interfaces.

Please consult LIAB ApS if you like to engage in a discussion on the design,
manufacturing and testing of a baseboard, which can fulfill your specific require-
ments.

LIAB ApS: nanoLIAB: User’s Manual 9

The LIAB board is presently distributed with a version 2.6.16 Linux kernel and a
Linux file-tree which is an extract of the Debian Linux distribution. The shared

libraries in this file-tree are based on a recent version of the GNU libc library:
libc6.

Please note that the ARM9 core is not compatible with x86 core of you Personal
Computer! Programs for the nanoLIAB must be compiled for the ARM platform
using a cross-compiler, e.g. the one included on the accompanying CD-ROM.

Figur 1.1: The nanoLIAB microprocessor board. Connections to a possible
baseboard is shown as rectangular boxes on the baseboard.

2. The nanoLIAB Hardware

The Linux In A Box (LIAB) ARM-based solution provides an excellent plat-
form for small control and data acquisition systems that needs to be supervised
over the Internet. The microprocessor board uses one of the most powerful At-
mel ARM based microprocessor currently available, providing both a number
of built-in peripherals, such as USB host and Ethernet, and also features very
low power consumption (0.8-1.2 Watts). The on-board FLASH PROM memory
provide storage for the bootloader, the Linux operating system and application
software and data. The nanoLLIAB board is equipped with standard connectors
and interfaces, as well as pin headers for interconnection with other pieces of
PCB, e.g. a baseboard. However, the nanoLIAB board is self contained, as you
may connect directly to the nanoLIAB using an Ethernet patch cable, a Serial
cable and a connection a USB host plug.

In the following, the features of the nanoLIAB microprocessor board are de-
scribed together with a discussion of the signals in the three pin headers located
on the bottom side of the board.

2.1 The nanoLIAB Microprocessor Board

The microprocessor board is an 6-layer PCB (Printed Circuit Board) which con-
tains the Atmel AT91RM9200 microprocessor, FPROM and DRAM memory, pe-
ripheral components and a linear power supply. To provide flexibility, most ac-
cesses to the features of the board can be done through either the standard con-
nectors or the three pin-headers located on the bottom side of the board. A block
diagram of the nanoLIAB microprocessor board is shown in Fig. 2.1.

10

LIAB ApS: nanoLIAB: User’s Manual 11

*/ */ */ */ "o Status LEDs,
T 7 7 7 oMo Pushbuttons
12¢ N

L |ric e <
T 2¢ t Pinheader JP1
Serial port 3888383883
debug [
PIO ports, Atmel
26 1/0 pins total Serial port, «—»I% Serial port
g AT91RM9200 DARTO 5 ‘ I P
5 " . USB host/sl
g Atematve furctons: 200MHz ARM920T |- oot/ dlve - ~[=]| single USB Host
-ué - 23%%32’33 support Seriel, Ethernet,
o - ¢
— SSC for audio support g%B IhZOCSt/SSFI’Tve’ Ethernet PHY Ethernet
Chip: 256 BCGA~ 10/100M8 10/100MB
Reset _
f_ logic -
\1 Stereo Audio T [l Headphone conn.
< -oooo Pinh. JP3
t t +5.0V <— Linear ===
Power
FPROM SDRAM 3.3V = Supply @ /@ pe Power
; 7-10VDC .
16MB 32/64MB +1.87 <] center in Watt typ.

Figur 2.1: Block diagram of the nanoLIAB microprocessor board.

The nanoLIAB microprocessor board has the following features:

e Atmel AT91RM9200 ARM microprocessor (small outline BGA package)
running at 180 MHz. The microprocessor includes interrupt and DMA con-
trollers, serial channels, timers, a real time clock, a FLASH and SDRAM
interface and lots of general purpose digital I/O ports. In addition, several
dedicated interfaces are present: Serial ports, Ethernet, USB host, USB
slave, I?C, SPI, ...

e 16 MB non-volatile FLASH PROM memory for the boot loader the Linux
kernel (presently version 2.6.16) and ramdisk containing the root file sys-
tem.

e 32 MB (64MB optionally) synchronous DRAM functioning main work stor-
age for the Linux system.

e An asynchronous serial ports multiplexed between two UARTS: the debug
UART and UARTO. Using the debug UART you may watch the console
output from the Linux system. Using UARTO, you have at hand a gen-
eral purpose UART for login, modems etc. The multiplexed port employs a
RS232 line driver, giving access to four signals: TXD, RXD, CTS and RTS.

e An 10/100 Mbit Ethernet interface, complete with an Ethernet PHY. You
may connect the a patch cable to the RJ45 socket on the nanoLIAB board
for network access to the nanoLIAB.

12 LIAB ApS: nanoLIAB: User’s Manual

e An USB host controller with a two port root hub. Thus, two USB devices
can be directly connected to the microprocessor board at the same time.

One of the ports are accessible through the standard USB connector on the
board.

e Real Time Clock (RTC) with battery backup.

e Operator interface having four LEDs and two push-buttons. A third push-
button is provided to reset the computer.

e A high performance stereo audio DAC, feasible of producing CD quality
audio signals. A headphone amplifier is also included, capable of producing
2x30mW into 32 2 speakers.

e A linear supply producing +5V, +3.3V and +1.8V for the on-board logic.
e Three pin-headers for power, digital IO and audio output.

2.2 Board Layout

The electronics for the microprocessor board is assembled on a PCB using four
layers for signals and two for power. The dimensions of the PCB are 62x68mm?
and the weight is less than 50 grams. Nearly all components are placed on
one side of the PCB, except for the connectors, LEDs, push-buttons and battery
holder for the RTC battery.

f

Headphone I: 10/100MB
connector P5 - P3 Ethernet, ethO
RTC D5, Eth activity

e battery

S D1 D2 D3 D4 Serial port,

o ‘ O ggod P2 Console or UARTO,

© SW1 /dev/ttySO, /dev/ttyS1
. Rese"c O O J
Single USB P4 SW2 SW3 P Power, 6—10VDC
HOST connector oo center pin pos.

'

Figur 2.2: Layout of connectors, LEDs, switches and pin-headers
on the nanoLIAB microprocessor board.

LIAB ApS: nanoLIAB: User’s Manual 13

The layout of connectors, pin-headers, jumpers and other large components is
shown in Fig. 2.2. The three pin-headers JP1 to JP3 are show as hatched rect-
angles on the figure. The purpose of the individual headers JP1- 3 is described
in Table 2.1 on page 14.

2.2.1 Power Supply

The microprocessor board must be powered by a DC supply having a voltage
between 6 and 12 volts using the power jack connector P1. The center pin in
the jack must be positive. The board consumes around one watt and it has been
tested to work in temperatures ranging from -10°C to +60°C. Power can also be
induced using the pin-header JP1. Similarly, regulated voltages of +5 Volt and
+3.3 Volt can be accessed using pins in JP1 and JP2.

2.2.2 Standard Connectors P2- P5

Using the standard connectors P2- P5, you may access the individual parts of
the microprocessor board:

e Connector P2: Standard RJ12 (Modular 6P6C) connector for serial com-
munication. See Fig. 3.2 on page 14 for the pin-out of the P2 connector.
As a default, you connect to the serial debug console (the DBGU UART on
the microprocessor, / dev/tt yS0), when accesing the P2. Thus, you can
configure the nanoLIAB using the bootloader, watch the boot process and
finally log into the system using registered user-ids and passwords. The
default communication parameteres are: 115200 baud, 8N1. However, us-
ing the program nanoctr| you may switch the serial multiplexer on the
nanoLIAB to facilitate communication with UARTO (/ dev/ttySl1). The
pins in P2 are also found on pin-header JP1.

e Connector P3: Standart RJ45 connector for Ethernet. Both 10 and 100
Mbit/sec is supported and in presence of link pulses on the connected Eth-
ernet cable, LED D5 is lit. Activity on the net is signified by blinks. You
may access the Ethernet interface using pins in pin-header JP1. However,
you cannot just connect yet another RJ45 connector of the same type (Pulse
Engineering J0026D01) in parallel with that on the nanoLIAB board. This
is due to the fact that the connector in question includes small signal trans-
formes. Thus, you have to unmount the connector on the nanoLIAB, if you
want to use an connector external to the nanoLIAB board.

e Connector P4: Standard single USB HOST connector for e.g. memory
sticks, WEB cameras, printers, etc. The nanoLIAB includes a two USB
HOST and one USB slave interface. All three interfaces are accessible on
pin-header JP1.

14 LIAB ApS: nanoLIAB: User’s Manual

e Connector P5: Standard stereo headphone connector for the high quality
stereo DAC on the nanoLIAB board. The headphone outputs and other
signals into and out of the stereo DAC are present on pin-header JP3.

2.2.3 LEDs and Switches

The nanoLIAB microprocessor board is equipped with 5 LEDs (D1-5), three
push buttons (SWL- 3). The first four LEDs are fully programmable, and can
be used as an operator interface for debugging and configuration purposes. the
fifth LED indicates the status of the network interface: link (constant light) and
activity (blinking). SWL acts as a reset push-button, whereas the state of SW\2- 3
can be read from software. In section 4.7 a Linux kernel module for the control
of these elements are presented, together with some programming examples.
However, you may also use the program nanoct r| , described in section 4.6 on
page 27, to control the LEDs and read the switches.

2.2.4 Pin Headers JP1 to JP3

The three pin headers present on the bottom side of the nanoLIAB micropro-
cessor board are labeled JP1, JP2 and JP3. Their location can be observed
on Fig. 2.2 and pin no. 1 is marked with a crossed rectangle. All pin head-
ers consist of two rows of gold-plated pins placed on a 2.00mm module grid.
The purpose of the individual pin headers is described in Table 2.1. The pin

Item | Pins Purpose

JP1 26 Power and communication:

e Power in: 6-12 Volts DC, unregulated
e Regulated power out: +5V and +3.3V
e Ethernet

e Serial port (DBGU or UARTO)

e USB HOST (x2) and USB slave ports
e Reset in/out

JP2 36 Peripheral pins:

e 27 Programmed Input-Output (PIO)

All pins have three functions: general 10 and two special func-
tions (timers, SPI, I?C, serial ports, SD/MMC card support,
interrupt, ...). You should consult the User’s Manual of the
AT91RM9200 microprocessor for further descriptions.

JP3 8 Audio connector:
e Line in/out and headphone out

Tabel 2.1: Pin-headers on the nanoLIAB microprocessor board: JP1 to JP3.

LIAB ApS: nanoLIAB: User’s Manual 15

headers are feasible for mating PCBs or ribbon cable connectors. You may
consult the schematics, found on the accompanying CD-ROM in the directory
har dwar e/ pr ocessor boar d/ , for the specific functions of the individual pins
of the pin headers. However, the functions of the pins in the three connectors,
JP1, JP2, and JP3, are given in Fig. 2.3.

JP2 JP3
+3V3 éé +3V3 AUDIOO éé AUDIO1 <+Line in L/R
PAO [6 O PA1 Connectors as seen AUDIO2 |© © [AUDIO3 <Line out L/R
PA2 |0 of PA3 from TOP side of AUDIO4 0 O AUDIOS <+Headphone L/R
g,\/}; gg (F;Q% PCB, i.e. the side AUGND | © O| AUGND <t+Audio GND
Pa22 |9 3| P23 wutcl; IEERS’ switches +3v3 & 8] +avs
PA25 |G G| PA26 an attery. PHYO [& PHY1 Ethernet
PA27 |G G| PA28 PHY2 [& & PHY3 media
GND [0 of GND PHY4 |0 0| PHY5 signals
PA29 |6 G| PB3/PB6 GND [& 8] GND
PB4/PB7 |6 6| PB5/PBS TXD[RS232] | o o | RTS[RS232] Serial port
PB9 |G G| PBI1O RXD[RS232] [& & cTS[Rs232] Console or UARTO
PB11 88 PB20 Reset in 9 8 Reset out <+Reset in/out
PB21 [8 PB22 Vin 6-10vDC |8 8| +5V
PB23 |8 o[PB24 USB-HOST A (D+) |8 & usB—HosT A (D-)
PB25 |8 8| PB26 USB-HOST 8 (D+) |8 8| use-HosT B (0-) ;’Iise(“f’ft c(,ft)s and
PB29 [8 8 +5v USB-SLAVE (D+) |G 6| USB-SLAVE (D-) P
GND |8 8| eND GND |6 G| oND

JP1

Figur 2.3: Signals of the three connectors on the nanoLIAB, JP1- 3.

3. Get your Board Up and Running

When delivered from LIAB ApS, your nanoLIAB microprocessor board is preloaded
with a boot loader and a Linux system. This system will boot when power is con-
nected using connector P2.

PLEASE NOTE: Electrostatic discharges (ESD) can
damage your LIAB board and care must be taken to
avoid them. You should wear a grounded anti-static wrist
strap before unpacking the nanoLIAB from the protec-
tive, anti-static bags it was delivered in. In addition, the
nanoLIAB should be kept on a grounded, static-free sur-
face.

3.1 Required Items
You need the following items to begin using the LIAB board:

e One nanoLIAB microprocessor board.

e A serial cable. The end to be connected to the nanoLIAB must
be equipped with a RJ12 (6P6C) plug. An appropriate connector
for your host computer must be located in the opposite end of
the cable. Wiring of a suitable cable is shown in Fig. 3.2.

e A power source. A DC power supply with a voltage in the range
6 to 12 volts, capable of delivering at least 2 watts, is required.
A simple wall plug-in power module with adequate power rating
is usable.

e A host computer with a serial channel and software for a ter-
minal emulator. The first login into the nanoLIAB can be done
using the serial line. Next, you can use the serial line to config-
ure boot parameters such as IP number, subnet mask, etc.

16

LIAB ApS: nanoLIAB: User’s Manual 17

e A twisted pair Ethernet cable is needed when you have config-
ured the board with the network parameters. If you want to
connect the nanoLIAB to a Ethernet hub or switch, any stan-
dard cable will do. Alternatively, the LIAB can be connected
directly to a host computer using a cross-link cable.

To HUB or directly to
[P3 - i network card in PC. Latter
case: crosslink cable.
To COM port on PC via
P2 - gE male DB9 connector

po— o1 - I: To suitable wall plugin power
p— unit or battery (6—10VDC)

(=

Ola
Q5

Figur 3.1: Connections to the exterior world: power, serial port and network.

3.2 Unpacking and Serial Connection

A suitable serial cable should be included with the nanoLIAB board when de-
livered from LIAB ApS. Alternatively, you can make one yourself if you have at
hand one RJ12 (Modular 6P6C) plug, a length of flat telephone cable with six
wires and a female DB-9 connectors. The wiring you need to make is shown in
Fig. 3.2

3.3 Start a Terminal Emulator and Apply Power!

Having connected the LIAB board to your host computer using the serial cable
you are ready to apply power through power connector P1. A terminal emulator
on the host computer must be started and configured for 115200 baud, 8 data-
bits and no parity bit. On a PC running Linux you may use the terminal
program "cu" as described in Appendix A. Having started "cu" at 115200 baud
and now applying power to the LIAB, you will see a boot sequence like this:

user @ost$ cu -1 /dev/ttySO -s 115200 Connect ed.
Boot >

Rel ease: 1.0, November 20, 2006 at 15:01 by nsa
Copyright LI AB ApS.

18 LIAB ApS: nanoLIAB: User’s Manual

Serial connection between

nanolLIAB and host PC: DB—9 femadle,
rear view
-)
Modular 6P6C plug, (RJ12), O
seen from connector side
5?5“\
— o2p
N — J o O) To COM—port
3; — X o 86 on HOST PC
1 e——
1&Q
Signals and dir: ()
6 RTS —
5 TXD —
4 GND —
3 GND —_
2 RXD -
1 CTS -

Figur 3.2: Serial communication for the nanoLIAB: connectors and wiring dia-
gram.

The boot| oader will now search for a conpressed kernel and file-
systemand try to boot up a Linux system |F YOU WANT TO GET | NTO
THE BOOT LOADER, YOU MUST SEND 3 DOTS W THI N THE NEXT 5 SECONDS: **. ..

The asterisks ("* ") at the end of the last line are time indicators, each separated
by a one second interval. If no user intervention occurs within five seconds, the
bootloader will try to locate a Linux system and boot it. You may try this out
and consequently you will see a boot-up sequence like this:

Rel ease: 1.0, Novenber 27, 2006 at 15:01 by nsa

Copyright LI AB ApS.

The bootl oader will now search for a conpressed kernel and file-
systemand try to boot up a Linux system |F YOU WANT TO GET | NTO

THE BOOT LOADER, YOU MJUST SEND 3 DOTS W THI N THE NEXT 5 SECONDS: *****
PHY reset conpleted OK

Scanni ng FPROM nmenory range 0x00000000 to OxOOf fffff

for gzipped kernel and initrd inages:

&I P image no. 1 found at addr 0x00020000

Filenane: vminux.bin
Comment: <no comment>
Timestanp: Nov 28 09:46: 25 2006 UTC

&I P image no. 2 found at addr 0x001a0000
Filename: initrd

LIAB ApS: nanoLIAB: User’s Manual 19

Comment: <no commrent>

Timestanmp: Nov 28 10:55:58 2006 UTC

Loadi ng kernel at 0x20008000

-- Now Deconpressing | mage! ---- Now Deconpressing | mage! ---- Nodeconpressed

age 2133904 bytes

Boot | oader: now putting Linux boot tags at 20000100

Starting Linux kerne

Li nux version 2.6.16 (nsa@sa) (gcc version 3.3.2) #31 PREEMPT Mon Nov 27 15:3
30 CET 2006

CPU. ARMD20Ti d(wb) [41129200] revision 0 (ARWAT)

Machi ne: At mel AT91RWB200- DK

Menory policy: ECC disabled, Data cache witeback

Cl ocks: CPU 165 MHz, master 55 MHz, main 14.745 MHz

CPU0O: D VIVT wite-back cache

CPUWO: | cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets

CPU0: D cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets

Built 1 zonelists

Kernel command |ine: |iabETH=00:90: 82: FF: 03: FO | i abl P=192. 168. 1. 153, 8, 192. 168.
1 i abHOST=nsa3.!|iab.dk |iabJFFS2=/jffs2 |iabRUN=/jffs2/StartApplication

< many lines of Linux kernel initialization nessages >

Starting httpd...

Executing file /jffs2/StartApplication
Setting system cl ock

Copying '/jffs2/root/*" to '/’

Loadi ng nanoLI| AB ker nel nodul e

LI AB di stribution 6l
LI AB ApS, visit http://ww.liab.dk

liab | ogin:

After approximately 10 seconds, you will get the Linux login prompt where you
can login as users "r oot " or "l i ab". The passwords are supplied on a separate
covering letter in the shipment from LIAB ApS.

3.4 Network Configuration: Send Three Dots

In section 3.3 it was suggested that no user intervention was taken during the
first five seconds after power was applied. As a consequence, a Linux system was
booted. This time we want to get into the bootloader menus in order to configure
network parameters. Press the reset button SW1 on the nanoLIAB standard
baseboard and then immediately send three dots, ". . . ", to the LIAB from your
terminal emulator. Now you will get a bootloader prompt:

THE BOOT LOADER, YOU MUST SEND 3 DOTS W THI N THE NEXT 5 SECONDS: ***
LI AB boot| oader, ‘h’ for help
Boot >

20 LIAB ApS: nanoLIAB: User’s Manual

Try the "h" command to get a list of possible commands:

Boot >h

d <start> <end> : Display nmenory from<start> to <end>
*f . G into the FLASH PROM utility submenu

h . Help (this text)

j <addr> : Junp to <addr>, default 0x21000000

I : Load i mages using uuencoded data
*p : Display and edit boot and network paraneters (a la lilo)
q : Quit monitor and continue boot procedure

r <rate> . Set baudrate (0:9600, 1:19200, 2:34800 3:57600 4:115200)
S . Scan menory for &ZI P inmages

items marked with "*" give access to submenues.

Boot >

As described, your LIAB will be equipped with a bootloader, a Linux kernel im-
age and a disk image when shipped from LIAB ApS. The kernel contains a driver
for the network hardware on the LIAB board. In addition, the root file system
in the disk image contains scripts for initializing the network system with IP-
number, subnet mask, default gateway, etc. At the end of the boot procedure,
both a network daemon, xi net d, and a web server daemon, ht t pd, is started.
Thus, you may connect to your LIAB board using e.gt el net and look at its web-
pages using a browser. The only thing you need to setup is the basic network
parameters which is done using the boot loader. From the "Boot >" -prompt, en-
ter the parameter sub-menu by typing the "p"-command. Help on the sub-menu
can be obtained using the "h"-command:

Boot >p
Entering the boot/network paraneter editor, ‘h’ for help
use options ‘n’ and ‘a for editing of network stuff.

Par anrh

a : alter the network specifications

h : help (this text)

d <line> : delete the specified paraneter-1line

i <line> <paranP : insert text <paranm> before paraneter-line <line
NOTE: the text string nust NOT contain spaces!

n show t he network specifications

p print the boot/network paraneters

q qui t boot/network parameter subrenu

w wite new paraneters back to FPROM

Par an>

Now you are ready to enter your IP-number, subnet mask, default gateway, host-
and domain-name and domain name server to the LIAB using the "a"-command.

You are asked the following:

" "

1. If you want to enter the IP network specifications, answer "y" for yes and
enter the IP-number and subnet mask for the primary Ethernet connection

LIAB ApS: nanoLIAB: User’s Manual 21

" \l

(eth0). Review the settings and if correct, type "n" when you are asked if
you want to further change the IP settings.

L n

2. If you want to enter the host/domain specifications, answer "y" and enter
the host-name, the domain-name and, if applicable, the IP-number of a

domain name server. Review the settings and if correct, type "n" when you
are asked if you want to make further changes.

Please note that you need to supply a domain-name in order to make the web
server work properly. You may use the domain-name "dummy" in case you are
on a local net without any nameserver.

Having entered the network parameters, you may first review them using the

p"-command and then write them back to the FPROM using the "w'-command:

Par anep

1: liablP=192.168.1.182,8,192.168.1.1

2: |iabHOST=liab2.I1iab. dk

Par anpw

Do you want to wite the paraneters back to FPROW [y/n]>y
Boot paraneters start at: Ox0O0fff800

Par an

The two parameters: "l i abl P=..." and "l i abHOST=. .. " are passed to the
Linux kernel just before it boots. This process is in nature identical to the pass-
ing of boot parameters from the LILO-prompt to the Linux kernel on a PC.

You are now ready to boot the Linux system. Either, you press the reset button
SW2 on the nanoLIAB standard baseboard or you enter two successive "q" (quit)
commands:

Par anrq
Boot >q
Scanni ng FPROM nmenory range 0x00000000 to OxOOf fffff

Loadi ng kernel at 0x20008000

-- Now Deconpressing I mage! ---- Now Deconp. ..
deconpressed i mage 2133904 byte

Boot | oader: now putting Linux boot tags at 20000100
Starting Linux kernel

You will now observe a boot sequence similar to the one printed on page 18.
Eventually, you will get a login prompt where you can login as users "r oot "
or "l i ab". You may also connect to the LIAB using "t el net " and you should
consider trying to browse the homepage on the LIAB using e.g. "firef ox" or
any other web browser.

4. The LIAB Distribution

A CD-ROM is enclosed in the shipment from LIAB ApS. It contains documenta-
tion and software for the nanoLLIAB board. The distribution is open-sourced as
described in section 1. This means that you are free to redistribute it.

4.1 Installing the Distribution

Before installing the distribution from the CD-ROM you have to make sure,
that you have at least 640 MB of free space on the hard drive of your Linux PC-
compatible computer. To install the nanoLIAB distribution you must get root
access and unpack the tar-file "<di stri buti on nane>.tgz" into a suitable
directory using something like:

user@ost# tar -xvz -C /<MyHonmeDir> -f |iab4l - ARM sep-2005.tgz

Files in the distribution are either owned by "root/root" (uid:1, gid:1) or "liab/users"
(uid:998, gid:100). If convenient, you might change the ownership of the files in
your local copy of the distributions provided that you do not change the owner-
ship of the files in the directory / | i abdi sc. To change the ownership of the files
to e.g. "randi:users"”, get root access and enter the distribution directory. Then

type:

user@uost# find . -user 998 -exec chown randi:users {} \;

4.2 Installing the Cross Compiler

To compile programs for the ARM architecture on a standard x86-based PC,
a cross compiler is needed. The directory sof t war e/ cr ossconpi | er contains
not only a precompiled cross compiler, but also scripts to build the cross compiler
from sources found on the Internet.

To install the cross compiler all that is needed is to copy the "opt / "-directory
from the CD-ROM to the root ("/ ") on your Linux computer as root:

22

LIAB ApS: nanoLIAB: User’s Manual 23

user @ost# cd /mmt/cdrom
user @ost# cp -a opt /

The normal way of using the cross compiler is prepending the path

/opt/crosstool /armsoftfloat-Iinux-gnu/gcc-3.3.2-glibc-2.3.2/bin

to your search path by inserting something like this in your profile (. profil e,
. bash _rc,.tcshrc,...):

PATH=$PATH: / opt/ crosst ool /farm sof t f| oat - | i nux-gnu/ \
gcc-3.3.2-glibc-2.3.2/bin

Now you can perform cross compilations using ar m sof t f | oat - | i nux- gnu- gcc
instead of gcc, ar m sof t f| oat - | i nux- gnu- c++ instead of c++ and so on.

To instruct a Makefile to use ar m sof t f | oat - | i nux- gnu- gcc instead of gcc,
you simply add the line "CC = arm softfl oat -1 i nux- gnu-gcc" to the top of
the Makefile, or adding it on the command line like this:

user @ost$ nmake nyprogram CC=arm softfl oat-|i nux-gnu-gcc

See the directory sof t war e/ cr ossconpi | er/ hel | o_ar mfor a Makefile exam-
ple.

4.3 Contents of the Distribution

This description of the distribution pertain to the nanoLIAB file tree as installed
on your host PC using the installation procedure described in section 4.1.

The directory "/ har dware":

This directory contains hardware documentation for the LIAB boards. Docu-
mentation of the current versions of the nanoLIAB microprocessor board and
the standard baseboard as supplied in the evaluation kit are placed here. The
documentation contains schematics (diagrams) and component layouts for both
boards.

The sub-directory "/ har dwar e/ pr ocessor board":
Schematics and component layout for the nanoLIAB microprocessor board.

24 LIAB ApS: nanoLIAB: User’s Manual

The directory "/ sof t war e":

This directory contains software for the nanoLIAB microprocessor board: boot-
loader, Linux kernel and file trees for disk images to be loaded into the FLASH
PROM.

The sub-directory "/ sof t war e/ | i abboot ":

Binaries for the bootloader for the nanoLLIAB microprocessor board. This direc-
tory also contains various shell scripts relevant for download of a new bootloader,
a new kernel and disk images.

The sub-directory "/ sof t war e/ | i abker nel "

Modified kernel source of the version 2.6.16 Linux kernel which is able to boot on
the nanoLLIAB microprocessor board. The directory also contains a compressed
tar-image of the original kernel source together with patch-files.

The sub-directory "/ sof t ware/ | i abdi sc":

File tree for a fully operational Linux system with scripts for boot-up and the
most relevant commands. Contains: network, bash, vi , shared libs, /dev, /proc,
Apache httpd, etc. Based on Debian version 6.2. Scripts to create a compressed
disk image suitable for download to the FLASH PROM on the liab.

The sub-directory "/ sof t war e/ cr ossconpi |l er":

The crosstool build script for gec used to build the cross compiler. The directory
also contain a precompiled cross compiler for Atmel AT91RM9200 ARM micro-
processor. For instructions on how to install and use the cross compiler, see 4.1.

The directory "/ pdf ":

Documentation of the various chips used on the nanoLIAB microprocessor board
and nanoLIAB standard baseboard. The directory "/ pdf / at nel " contains full
documentation of the AT91RM9200 ARM chip.

4.4 Demo program for the LIAB

This section provides a short introduction on the use of a Linux PC as a de-
velopment platform for writing application for the nanoLIAB system. Before
you start this introduction, make sure that you have entered the network pa-
rameters into your LIAB as described in section 3.4 and that you can get in
contact with your nanoLIAB using the network (test the connection using eg.
the "pi ng"-command).

After installing the LIAB distribution, including the cross compiler, on your
Linux PC as described in section 4.1 you will find an example of a very sim-
ple Linux application program in the directory

/ sof t war e/ cr ossconpi | er/ hel | o_ar m To get into this directory, type:

user @ost$ cd <your liabarmdist. path>/software/crossconpiler/hello_arm

LIAB ApS: nanoLIAB: User’s Manual 25

In the / hel | o_ar mdirectory you will find the source file hel | o_arm c for a
small program that does nothing else than print out a short text when executed.
To compile the hel | o_ar m c file using the ARM cross compiler, type:

user @ost$ armsoftfloat-Iinux-gnu-gcc hello_armc -0 hello_arm

or alternatively, use the make utility:

user @ost$ make hello_arm

The output file: hel | 0_ar mis an executable that can run directly on the nano-
LIAB.

First, boot up your LIAB and use the program ft p to transfer the executable
hel | o_ar mto the nanoLLIAB target:

user @ost$ ftp <IP of the LI AB-board, typically 192.168.1.180>
Connected to liab (192.168.1.180).

220 Wl come to LI AB FTP servi ce.

Nane (host:user): root

331 Pl ease specify the password.

Password: < enter LI ABARMD200 root password >
230 Logi n successful.

Renote systemtype is UN X

Using binary node to transfer files.

ftp> put hello_arm

226 File receive K

ftp> bye

221 Goodbye.

user @ost $

Next, connect to your nanoLIAB system from your Linux PC using e.g. cu as
described in Appendix A. Login as root and make the file hel | o _ar mexecutable

user@ost$ cu -1 /dev/ttySO -s 115200
connect ed

root @i ab# chnod +x hello_arm

root @iab# ./hello_arm

Hello ARM World

root @i ab#

As an alternative to ft p, you might use the command r cp (remote copy) to
transfer files between your host PC and the LIAB board. However, before you
can do that you must log onto the LIAB and add an entry to the . r host s-file in
the directory / r oot :

26 LIAB ApS: nanoLIAB: User’s Manual

user@ost$ telnet <IP of the LIAB-board, typically 192.168.1. 180>
Connected to liab.

Iiab login: root

password: < enter LI ABARMD200 root password >

root @i ab# cat >> .rhosts

< | P-nunber of your host PC > < your userid at the host PC >
< presse Ctrl-D >

root @i ab#

To transfer the file hel | o to the LIAB use the r cp-command on the Linux PC:

user@ost$ rcp hello_armroot @LI AB's | P-nunber>: .

The file hel | o_ar mis now copied into the home directory of user r oot . To run
the program, switch to the telnet-session stated above and type ". / hel | o_ar ni':

root @iab# ./hello_arm
Hel | o ARM Worl d
root @i ab#

4.5 Loading the nanoLIAB Module

Kernel modules in Linux are units of compiled code that can be loaded and un-
loaded from the kernel on demand. One type of kernel module is device drivers,
allowing the system to communicate with connected pieces of hardware, e.g. se-
rial ports, printers, etc.

The preloaded Linux system that came with your nanoLIAB microprocessor
board includes a device driver for reading and controlling the state of the buttons
and LED’s located on the nanoLIAB microprocessor board.

The following assumes that you have created either a telnet connection or a a
serial connection using "cu" as described in appendix A to the nanoLIAB board.

To use a Linux kernel module it must first be loaded into the kernel. If any
communication to and from the module is necessary a corresponding device-
special file must also exist in "/ dev". To load the module the "i nsnod" program
is used, and the device-special file is created using "nknod". In the example
below the module is first inserted, and followingly a device-special file, called
"nanonod" is created.

root @i ab# i nsnod nanonod
root @i ab# nknod /dev/ nanonod ¢ 63 0

LIAB ApS: nanoLIAB: User’s Manual 27

Through the device-special file you now have read and write access to the but-
tons and LEDs. A thorough description of the possible interactions with the
module "nanonod” can be found in a "README"-file on the CD-ROM at:

sof tware/ | i abkernel /I iab-nodul es/|iabar nmod/ ker nel space

For now, we just want to light up the ten LEDs and the individual segment in
the seven segment display. Try the following series of commands:

root @i ab# echo ""LO"
root @i ab# echo ""L1"
root @i ab# echo ""B1"
root @i ab# echo "~D1"
root @i ab# echo ""AV7"

/ dev/ nanonod
/ dev/ nanonod
/ dev/ nanonod
/ dev/ nanonod
/ dev/ nanonod

light LED D1 >

light LED D2 >

blink LED D2 >

darken LED D2 >

Set leds D4..D1 = 0111 >

V V.V VYV
ANNNNNA

It is also possible to read the state of both push buttons (SW2- 3) through the
"nanonod" module. To read the state of the two push-buttons, we type:

root @i ab# dd i f=/dev/nanonod count =1
00

The two digits returned represents SW1 and SW2 (1 when button is depressed, 0
if not). The source code for the module and an example of how to use the module
within software is included on the accompanying CD-ROM. See the directory

/ sof tware/liabkernel /| iab-nodul es/|i abar mod/ .

4.6 The Board Control Program: nanoctr |

Instead of accessing the kernel module directly, LIAB has written a small pro-
gram to:

1. Control the four LEDs DO- D3
2. Read the status of the two switches SW2- 3

3. Control the serial port multiplexer which chooses whether to out the debug
UART, DBGU, or UARTO on the RJ12 connector P2. (default at boot up is
always debug UART)

28 LIAB ApS: nanoLIAB: User’s Manual

The program actually uses the kernel modules nanonod and the device special
file / dev/ nanonod. Thus, the module has to be loaded and the device special
file must exist. However, the default start-up application located in FLASH disk
as/jffs2/ StartApplication does this.

You may see the options for the nanoct r| program by entering:

root @i ab# nanoctrl -h
Programto operate the various facilities of the nanonod nodul e.

Usage: ..# nanoctrl <options>
Options:
-h --help . Help (this text)
-r --read : Read button states
-1 --led [VALUE] : Set LED states to VALUE, where
VALUE i s a hex nunber
-s --set-serial [MODE] : Set the P2 serial port into AUX

serial or DEBUG serial npode. MODE
can be one of either AUX or DBG
LI AB ApS <www. | i ab. dk>, Nov. 2006
root @i ab# nanoctrl -1 5 < light LEDS D1 and D3 >
root @i ab# nanoctrl -r
SW2: 0 SWB: 1

4.7 A demo program using the module nanonod

You may use nanoLIAB module "nanonod" from shell scripts, either by accessing
it directly or by using the program nanoctr| . To use the module in a compiled
C program, however, a series of standard C function calls is to be used. The rel-

evant function calls in this demo program are "open() ", "cl ose()", "read() ",
and "'write()".

The following program shows how to write a program making a running light on
the four LEDs D1- D4 as long as none of the switches SW2- 3 are depressed.

The first task in the program is to get a file descriptor for the device-special-
file we want to communicate with. A file descriptor can be obtained using the
"open() " function call. The corresponding function "cl ose() " releases the file
descriptor when it is no longer used.

An example of opening and closing a port to the nanoLIAB module is shown
below. The actual communication with the module is done using the file descrip-

tor and the two function calls "read() " and "wri t e() ". Please also consult the
source codes located in the directory:

sof tware/ | i abkernel /Iiab-nodul es/|iabar mod/ user space

on the accompanying CD-ROM.

LIAB ApS: nanoLIAB: User’s Manual

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>
#i ncl ude <string. h>

#defi ne READBYTES 4

i nt mai n(voi d)
{
/* This is the file descriptor */
int fd;
/* Buffer to hold characters to wite and those read */
char str[20];
int i=1, cnt=0, sw=0;

/[* Try to open the device in read/wite node */
fd = open("/dev/nanonod", O RDWR);
/* Check whether it opened correctly */

if(fd < 0)
{
printf("Error opening nodul e\n");
exit(0);
}
whi | e(1)
{
/* Read button states */
do
{
cnt = read(fd, str, READBYTES);
if(cnt > 0)
{

/* Parse the button states */
if (strncnp(str, "00") == 0)
br eak;
}
usl eep(100000);
} while(l);

/* Wite the LED value to the nodule */
sprintf(str, "AVO&", i);
wite(fd, str, strlen(str));

i =(i ==8) ?21: i <<1
usl eep(100000);
}
/* Close the device again */
cl ose(fd);

5. The Boot Loader

The boot loader represents the very first code executed after a power up or reset
of the Atmel AT91RM9200 ARM microprocessor. The flow of the boot loader is
shown in Fig. 5.1.

The firmware of the AT91RM9200 can use several sources for binary boot code:
download using the debug serial port, fetch of code from the EEPROM or boot
directly from the FLASH PROM.

When instructed to boot from the FPROM directly, the ARM processor starts
executing instructions from address 0x0. Now, the bootstrap written in assem-
bler sets up debug serial port the DRAM system. Subsequently, the part of the
FPROM that represents the boot loader is copied to DRAM and a execution is
transferred hereto. Last, a stack segment is set up and a call is made to a "mai n".
All further coding can be done in the C programming language, compiled using
the gcc cross compiler. As discussed in section 3.3, the boot loader next prints a
banner before it waits for five seconds, looking for three dots to be received over
the debug port.

5.1 Three Dots Received ...

If in fact the boot loader receives the three dots within the five second period, the
boot loader enters a menu system. The boot loader gives you a variety of options
for display of memory, baud rate switch, code download, manual decompression
of gzipped images and unconditional jumps to a prescribed location of memory.

In addition, you may enter two sub-menus, one for operations on the FLASH
PROM and one for editing of the boot parameters. In the FLASH PROM menu
you may read, erase and write to the PROM. In addition, you may download
binary images which are programmed into the FLASH on the fly. The sub-menu
for the parameters you may view, delete and enter new parameter strings which
are given to the Linux kernel at boot time. To ease the entering of network
parameters an interactive questionnaire is implemented in this sub-menu, see
section 3.4.

30

LIAB ApS: nanoLIAB: User’s Manual 31

2 M

Hardware Init Bootloader FPROM Menu
*PLL/clock setup. Main Menu *Erasure of FPROMs.
*Init of serial line *Memory display. | *Download of

and DRAM system. *Baudrate switching. images to FPROMs.

*Download of
images to DRAM.
*Manual GZIP image
decompression.
*Jump to address.

Param Menu

*Display and edit of
boot parameters.
*Write to FPROM.

User inter—
vention within
5 seconds?

il Al

GZIP Scan
*FPROM scanning for

Compressed

Kernel Image
compressed kernel *
and ramdiscs.

LL Linux Setup
*Further setup of

> HW to suit Linux. Lnump to
*Decompression of

kernel image.

Figur 5.1: The boot loader for the nanoLIAB board.

5.2 No Dots Received ...

If the five seconds elapse without the reception of three dots, the boot loader
will try to boot a Linux system if one is found in the FLASH PROM. Both the
Linux kernel and its accompanying ramdisk are expected to be in compressed
state. The boot loader will now search the FLASH PROM for compressed im-
ages. In the event that a Linux kernel image is found, it will be decompressed
into DRAM starting at address 0x20008000. Further setup of the hardware is
done (initialization of interrupt controllers, copy kernel parameters to DRAM at
0x20000100, ...) before a jump to address 0x20008000 is performed. At this
stage the Linux kernel takes over. The boot loader code is not used before a hard
reset condition again is enforced on the Atmel AT91RM9200 ARM microproces-
SOT.

32 LIAB ApS: nanoLIAB: User’s Manual

5.3 Download of Binary Images

To download binary images over the serial port, you face the problem that most
serial drives are unwilling to accept and transmit all the 256 possible ASCII
characters: 0x00 to Oxff. A simple way to solve the problem is to chop the
stream of bits into chunks of six bits. With a proper offset, these chunks can now
be send using the alphanumeric part of the ASCII codes. Other characters can
be used to signal start-of-line, end-of-line, etc. For this purpose, a utility called
uuencode is readily at hand in typical Unix or Linux systems. Thus, the "l "-
commands expect the peer to transmit data produced by the uuencode program.
Traditionally, the first line of a uuencoded stream specifies the filemode and
filename like this:

begin 644 vn i nux. gz
ME8/ >IF@' ' ="71ZP "

However, no filename is needed in this context and the string representing it is
instead used to specify the load address and a POSIX.1 CRC checksum in the
format <addr >- <cr c>:

begi n 644 f0000- 1150042577

where f 0000 is the load address in hex and 1150042577 is the CRC checksum
in decimal. During load, the checksum of the binary data will be calculated and
compared to the original checksum stated in the first line of the stream. You can
generate a file to be downloaded using a script like this (named e.g. nkuu):

#! [/ bi n/ bash

FI LE=$1

LOADADDR=%$2

CKSUME$LOADADDR- * cksum $FILE | cut -f1 "-d "*
uuencode $CKSUM < $FI LE

which is called like this:

user @ost$ nkuu <fil ename> <l oadaddr> > <uufile>

6. MTD and JFFS2

Unlike a mainstream PC the LIAB board stores not only its bootloader, but also
the Linux kernel and initial ramdisk image in the non-volatile part of memory:
the FLASH PROM (FPROM for short). Normally, the FPROM is only accessed
during boot-up since all relevant data are copied from FPROM to RAM during
boot. When done, all further accesses are done to RAM. The downside of keeping
all data in RAM is that the content of RAM disappears if the power is lost or the
LIAB board is reset. It is therefore desirable to use part of the FPROM as a
hard-disk like device: a FLASH disk.

Linux-kernels nowaday have support for FLASH disks using the driver system
called "Memory Technology Devices" or MTD for short. By including MTD in
the Linux kernel, access to the FPROMs becomes possible trough a set of char
and block device special files. One can now create a filesystem on one of these
block devices and next mount using a suitable mount-point. However, using a
traditional Linux filesystem like ext 2 has at least two drawbacks: The first is
related to power fails whereas the second is about wear for the FPROM chips.

During power fail, traditional file systems get corrupted and must be checked
and repaired when the computer comes up again. Sometimes the repair even
fails! Embedded systems are normally required to be tolerant to power fails,
meaning that the system must be able to boot without problems when power is
restored. Thus the filesystem used must be tolerant to interruptions. By keeping
ajournal of all transactions performed to the file system, its integrity can always
be restored when the computer boots again.

Traditional filesystems have no strategy for the use of disk space. Thus, some
sectors of the disk may be rewritten again and again, whereas other are left un-
touched for long periods. This is not a problem when dealing with hard disks,
but each sector of a FPROM can only stand a limited number erase/rewrite cy-
cles. To avoid erasing the same sector over and over again, a wear leveling
algorithm must be used. The filesystem JFFS2 (Journalling Flash File System
2) is a filesystem suited for FPROM since it utilizes both the above mentioned
journalling principle as well as wear leveling.

By employing MTD and the JFFS2 filesystem on the nanoLIAB, one may get

33

34 LIAB ApS: nanoLIAB: User’s Manual

between two to ten megabytes of FLASH disk, depending of the hardware con-
figuration of the nanoLIAB microprocessor board. This area is suitable for the
storage of application-specific programs and data. The rest of this section deals
with these systems on the nanoLIAB board.

6.1 Memory Technology Devices, MTD

Note: before carrying out the procedures listed below, you should check
if your nanoLIAB has a suitable configuration for MTD and JFFS2.

The Memory Technology Devices system (MTD) gives access to FPROM, RAM
and other types of memory through a set of block devices drivers under Linux.
The MTD-system is part of Linux-kernel, and is now enabled by default in
the standard LIAB Linux-distribution. In Fig. 6.1 you may study the default
FPROM memory map on the nanoLIAB.

0x1000000 Boot parameters
0xfe0000 (/dev/mtdblock3)

Available space
for a JFFS2
filesystem

MTD extra partition:

o /dev/mtdblock4
=
©
~m
N
o
- The size of both partitions can be

g @ >— altered during kernel configuration.
g% 0x600000 ("make xconfig”, MTD/maps section)
02
SR

Compressed

ramdisk image MTD root partition:

/dev/mtdblock0
0x1a0000 —— l

Linux kernel nanoLIAB FPROM map
| 0x020000 (/dev/mtdblock2) (S29GL128N FPROM)
-— 0x000000

bootloader
(/dev/mtdblock1)

Figur 6.1: Layout of FPROM memory on a standard nanoLIAB.

The MTD partitions can be accessed from a user-space Linux program using the
following device special files (the numbers in parenthesis denotes the major- and
minor-number):

LIAB ApS: nanoLIAB: User’s Manual 35

Partition: char: bl ock:

Root /dev/ nt dO (90/0) / dev/ nt dbl ockO (31/0)
Boot /dev/ntdl (90/1) / dev/ nt dbl ockl (31/1)
Ker nel /dev/ nm d2 (90/2) / dev/ nt dbl ock2 (31/2)
Par am /dev/ n d3 (90/3) / dev/ nt dbl ock3 (31/3)
JFFS2 [dev/ ntd4 (90/4) / dev/ nt dbl ock4 (31/4)

6.2 Journalling FLASH File System 2, JFFS2

The MTD system gives the ability to create and mount file systems on top of
MTD block device special files. However, one must face a number of conditions
when using FPROMs as the media for a file system:

1. Reading from a FPROM is nearly as fast as reading from static or dynamic
RAM. However, writing to a FPROM is slow and in order to alter the con-
tent of a FPROM sector (typically 64 Kilobyte) one must first erase and
then rewrite it.

2. Each sector of a FPROM is only able to tolerate a finite number of erase
cycles, in the order of 10° — 10° erasures.

3. FPROM memory systems are often used in embedded systems, where it is
a requirement that the file system does not get corrupt when the processor
is stopped abruptly by a power fail condition.

Problems regarding the slow writing speed can be solved using a proper buffer-
ing system and by having a pool of preerased sectors at hand. The overall life-
time of the FPROMS can be extended using wear leveling algorithms where a
randomly chosen, preerased sector is used when data areas are to be updated.
Last, by employing a transaction journal, the integrity of the file system can be
reestablished when the Linux system is waked up again.

The most extensive FLASH file system under Linux is named "Journalling FLASH
File System 2", JFFS2 for short, and is developed by RedHat. Support for this
file system is selected during kernel configuration under "Fi | e Syst ens".

Bibliography

[1] D. P. Bovet and M. Cesati, "Understanding the Linux Kernel”, OReilly &
Associates, Inc., Sebastopol, CA, first edition, 2001, ISBN 0-596-00002-2. 8

[2] M. K. Dalheimer and L. Kaufman, "Running Linux”, O’Reilly & Associates,
Inc., Sebastopol, CA, fifth edition, 2006, ISBN 0-596-00760-4. 8

[3] R. Bentson, “Inside Linux”, SSC, Inc., Seattle, WA, 1998, ISBN 0-916151-
89-1. 8

[4] A. Rubini, “Linux Device Drivers”, O’Reilly & Associates, Inc., Sebastopol,
CA, second edition, 2001, ISBN 0-596-00008-1. 8

[5] A. Rubini J. Corbet and G. Kroah-Hartman, "Linux Device Drivers”, O’Reilly
& Associates, Inc., Sebastopol, CA, third edition, 2005, ISBN 0-596-00590-3.
8

[6] M. J. Bach, "The Design of the UNIX Operating System”, Prentice-Hall, Inc.,
Englewood Cliffs, NdJ, 1986, ISBN 0-13-201757-1. 8

[7] M. J. Rochkind, "Advanced UNIX Programming”, Prentice-Hall, Inc., En-
glewood Cliffs, NdJ, 1985, ISBN 0-13-011800-1. 8

[8] P. K. Andleigh, "UNIX System Architecture”, Prentice-Hall, Inc., Englewood
Cliffs, NdJ, 1990, ISBN 0-13-949843-5. 8

[9] W. R. Stevens, "UNIX Network Programming”, Prentice-Hall, Inc., Engle-
wood Cliffs, NdJ, 1990, ISBN 0-13-949876-1. 8

36

LIAB ApS: nanoLIAB: User’s Manual 37

Links

Below, a number of relevant hyperlinks for ARM development are listed.

ARM General

The AT91 ARM resource pages are maintained by Atmel. It contains informa-
tion on both Atmel development kits for their ARM series, a support forum, and
links to third party development tools.

http://ww. at 91. com

ARM Linux

ARM Linux is a port of the Linux Kernel to ARM processor based machines, lead
mainly by Russell King, with contributions from many others. ARM Linux is
under almost constant development by various people and organizations around
the world.

http://ww. arm | i nux. org. uk

In the ARM Linux developer section the newest ARM kernel developments are
available, plus additional useful information for ARM development on Linux.

http://ww. arm | i nux. org. uk/ devel oper/

Debian Linux

The nanoLLIAB distribution is based on Debian Linux.

htt p: / / ww. debi an. org

The more than 15000 packages for the Debian Linux distribution are distributed
from several mirrors, most of which are listed on the Debian Package pages.
Most of these packages already exist in readily downloadable versions compiled
for ARM.

htt p:// packages. debi an. org

http://www.at91.com
http://www.arm.linux.org.uk
http://www.arm.linux.org.uk/developer/
http://www.debian.org
http://packages.debian.org

A. Using cu as terminal emulator

The nanoLIAB was specifically designed for the Linux operating system and
a natural choice for a development platform and host computer would be an
IBM-compatible Personal Computer (PC) running Linux. A number of termi-
nal emulators are readily available in the various Linux distributions or can be
downloaded over the Internet.

One of the oldest and simplest emulators is the cu-program, which stands for
"Connect Unix". You don’t get any fancy graphical user interface, you just get
connected!

In the following, we assume that the nanoL.IAB is connected to the COM1-port
on the host PC and that this port can be accessed trough the device file named
/ dev/ tt ySO (this is at least true for Redhat 7.x and 8.x distributions).

To start cu, log in as root and type the command:
"cu -1 /dev/ttySO -s 115200". To exit cu again, type a tilde: "~", followed
by a dot: ". " on a new line:

user@ost$ cu -1 /dev/ttySO -s 115200
Connect ed.
< conmmuni cation with the LI AB board >

Di sconnect ed.
user @ost $

It may be inconvenient to have to log in as root when using cu. To access the
COM1-port from any user account, you have to change the permissions on the
device files that refers to the COM-ports: "chnod 666 /dev/ttyS0" will give
permissions to everybody to use the port.

Downloading kernel- or disk-images to the LIAB board can also be done from
within cu. If you want to download the image-file "v", located in the same di-
rectory as where cu was started, you first tells the remote system, in this case a
LIAB, that a download is to be initiated. Next, by issuing the command ~>v the

download is started. A typical example is given on the next page:

38

LIAB ApS: nanoLIAB: User’s Manual

user@ost$ cu -1 /dev/ttySO -s 115200

Connect ed.
< communi cation with the LI AB board >
29F800>|
~>v
1234567891011 < indication of downl oad >

e e 862 863 < or sone other nunber >
[file transfer conpl ete]
[connect ed]

Di sconnect ed.

39

B. Schematics and Layout

On the following pages the complete schematics and component layouts for the
nanoL.IAB microprocessr board.

Figure no. | Description:

B.1 nanoLIAB: Block diagram, connectors, pin-headers.

B.2 nanoLIAB: Power supply and decoupling.

B.3 nanoLIAB: Reset circuit and CPU oscillators.

B.4 nanoLIAB: AT91RM9200 CPU, FLASH and SDRAM memory.

B.5 nanoLIAB: CPU PIO port A and B, Serial port, RTC and audio
system.

B.6 nanoLIAB: CPU PIO port C and D, USB system, LEDs,
switches.

B.7 nanoLIAB: Ethernet PHY.

B.8 nanoLIAB: Component placement, top.

B.9 nanoLIAB: Component placement, bottom.

Tabel B.1: Overview of schematics and component placements on the
following pages.

40

’Ig anSyy

qgvrounu

Id

‘SLapwaYy-uld ‘.40709UUO0I “WDLEDID YI0]g

z T

POWER SUPPLY

SHEET 2
DESI GNATORS: 2xx

DC POWER

NANOLIAB POWER SUPPLY

P1
POWER

MEMORY

SHEET 4
DESI GNATORS: 4xx

RSTIN|

RESET

NANOLIAB MEMORY

P5
AUDIO4 LEFT
RESET AUDIOS _RIGHT 26 A |_|
1 3 30026001
HEADPHONE TTTTTTTT
OSC AND RESET PORT AB ETHERNET ATBND
SHEET 3 SHEET 5 SHEET 7 :tjg:gg :tjg:gl
DESI GNATORS: 3xx DESI GNATORS: 5xx DESI GNATCRS: 7xx A2 Lo
AUDIO0..5)
T CE
[a)a) 3
54622088z
AUGND AUEND PPRGORECh®
AUDIO[0. 5]
RESET RESET RESET 0.3 BREN
olclal | |olsle
[z | |EEE
EMI[0.17 gaja) | g
EMII[0..17] @ @ EMI0..17] PHY[0..5]
PHY[0..5]
— {2
ETHINT ETHGND GND
SER[..3]
VIN 2 RJ12-6P6C
PA[0..31]
DTRL
RTSO PB[0..29]
P RESETIN
ANmTbo
o
NANOLIAB OSC AND RESET NANOLIAB PORT AB NANOLIAB ETHERNET 2 | |2
aje) Y ofn
SER[0.3]
USB[0.5)
PORT CD AND USB
+5V Farnel | : 968950 968961
SHEET 6 F101
DESI GNATORS: 6xx /OT
DTR1
RTSO FUSE o
ETHPD P4 USBHOST
ETHINT
GND v 5
usB1 FrET
M P
USBO
GND
X PE3 /|
X Pe5 /|
X PE10__/|
PB20
o lJPﬁ |JP1 o DW//
u u bPs2d /]
B PB26
ETH > GND
AUDI O P3 5
P5
USB[0..5]
USBI0.5]
SER .
P2 Liab A p S
uss @stre Allé 6 - DK 9530 Stavring
NANOLIAB PORT CD AND USB P4 J:gomﬁg:: - Fax 98370144
O L @)
]

Sdy gvI'T

qgvIioueu

[enuey S,19s()

187

&g an3ny

gVITounu :

gd

1dnooap puw £)ddns 4aomog

‘Su1

AT9IRMS9200 MICROPROCESSOR
VDDIOP
VDDIOP
VDDIOP
it VDDIOP POWER
VDDIOP
D51 \ppiop +3.3V
VDDIOP
H1a | VOD@FE POAER FOR OSC AND PLL ON 0SC- PART
VDDIOP
c204 K4 vppiop

6v3 100N L6 vppior

U202
LM1117MPX-5.0

DC POWER ’ ’ VIN VouT I T
vouT
D201 c202 _L c208
TRANZORB I qaL 100716V T

GND GND GND

Q,
g enp

VDDIOM
VDDIOM
VDDIOM
VDDIOM
61 vopiom +3.3V
VDDIOM
VDDIOM
VDDIOM
VDDIOM

U203
M1117MPX-3.3

VIN VOouT
2 vout [FA—
o

—L_ c205

L5 ls
1 =1

Cl4

VDDCORE
VDDCORE
VDDCORE
voocore F 1.8v
VDDCORE
VDDCORE

GND GND GND GND GND GND 116
T

Ul

COOLI NG PAD PLACED UNDER Da | GND
U402, COOLING PAD |'S GND. D11 | GNP

U204

’ VIN vouT T E8{ GND ov
Loe Locrme Locom Lo Lo | oo
ca221 c222 c223 ca24 c225 ca26 G3 GnD
C206 R201 100N 100N 100N 100N 100N 100N H16 1 GnD
I 220N) a2 &N

10K ERROR GND GND GND GND GND GND L5 1 CND
M2

M GND

GND

GND
GND GND M2 1 GNp
LP3961EMP-L8 Ni2 | 2ND

(4%

Ssdy gvI'1

qgvIioueu

Liab ApS

Dstre Allé 6 - DK 9530 Stavring
Telefon 98370644 - Fax 98370144
‘Web: www liab.dk

E-Redi aiRahaedk

Tide: NANOLIAB, POWER SUPPLY

Schematic Name: _Z: S
Date: Wednesday, October 04, 2006 hee 2

5 T 7 T 7 T z i T

[enuey S,19s()]

:e°g ansyy

qgvrounu

¢d

'8.401D]]19S0 1) PUD 11MIL1D J9SIY

+3v3
R303
K7 U2010
AT91RM9200 MICROPROCESSOR
+3v3
=4 1570 RESET, OSC AND JTAG
e RE
+3V3 +3v3
R304
R302 4K7 A2 JTAGSEL
K7 DI
R30L *—BL 100
a7 U301 GND C1 %';
vee RESET [2 E2 NTRST
_ R305
RESET IN > MR GND c301 K
MICB115 0P || Y301 XIN 17 {
GND r I
cao2 (|
10p xouT
1 1;.7456MH1 xout
c303
10P || Y302 XIN32 G17
XIN32
RESET < L él
c304
P! 100 X0UT32
3;.763KH1 xouts2
+1v8
1 VDDOSC
GNDosc VY™ 7 14
R306 C305 VDDOSC
2R 100N [—ILL GNDOSC
+1v8 GNDOSC
A YRDRUA 15+ voopLLA
R307 c306 PLLRCA
22R 100N GNDPLLA
+1v8 GNDPLLA
Q VDDPLLB
Z301 GNDOSC ? H13 | vpopLLe
oR R308 c307 PLLRCB
2R 100N GNDPLLB
L €1
GND 2302 GNDPLLA eNOPLLE | 09 L __
OR AT9IRM920BGA
2303 GNDPLLB
R
R309 R310
1K5
c308
10N
C309 ca11
N0 N0
GNDPLLB GNDPLLB

Liab ApS

Dstre Allé 6 - DK 9530 Stgwring
Telefon 98370644 - Fax 98370144
‘Web: www.liab.dk

E-mail: info@liab.dk

Tile: NANOLIAB, OSCILATORS AND RESET

Sdy gvI'1

qgvIioueu

[enuey S,19s()

1537

g anSyy

qgvriounu

pd

1

Lowdwt Wvyds Puv HSV'IA (1dD 0066 NHI6.LV

A,

U201A D[0.15]
””””” +3v3
o}
AT91RM9200 MICROPROCE
B; N11 D2 SDA10
0s Fa—2 A9
ADDRESS AND DATA BUS s 413 a2 U401
P11 3 POONOOQ D
D5 D A A >>>>>>> DO D
10 4 GBanans 4
b6 107 A A P9T999% ot
o7 L 2 2 2 D2
o T A S A D3
D9 A D4
P1; Al 0 10
D10 A5 D5
ui2 D A8 1 11
D11 A6 D6
T12 D A9 2 L
o12 (27 AT A7 07 [o
o13 (R12-3 AT aa A8 08 42——55
o1 HA3-F 9 Do 44—
D15 ALs ALOAP p10 (-4 Bt
D16/PC16 A4 — A A1 D11
36 4 DI2
p17/pc17 FRI3X o AL2 D12
20 50 D13
D18/PC18 [HaX A7 BAO D13 [0 BLr
D19/PC19 LA —A 21 epm D14 [e
D20/PC20 R8¢ SDBSL D15
D21/PC21 [t
D22/PC22 [FHLX 20 uDQM
- T
D23/PC23 [FHEx LDQM
D24/pC24 [FRISX WE 6l
D25/PC25 [HEAIX Bers 184 we
D26/PC26) DRAS 18| SAS mTasLC32MI6 O
p27/PC27 (R4S Bes 18 Ra
D28/PC28 [SoRE 1 cs
D29/PC29 (R8¢ CKE
030/PC30 12X spck . 9259999
D31/PC31 [FMAX Clk 00660606060
A[0.25] A23
AO/NBSO m ﬁ %:g
AL R2 [A o
A M3 A
N4
2‘; N2__A: R404 0 R405 2 RAO6
g v KT S KT S aKT
Al -
g N4
A9 |N3AS
M5 A GND GND b
a0 Mes A U402
b1 A A 5
a1 (B v 2 a0 DQO
AL3 & A AL DQ1
I 25 9
AL4 A2 DQ2
‘Als [FLL A Al 24| 53 D03 41
AL6/BAO (LA 25 3 A4 DQa 44 D
AL7IBAL [L—A A 2 { A5 DQs (48 D
R3 A A 1 48 DI
A18 A AS A8 DQ6
AL L4 01 A7 Q7 2
A20 [BEA A 101 g DQs (38
no1 |8 A2 /] A 9 o DG 28
ps A2/ A 8 40 0
A22 A10 DQI0
T4_A2s /] A 7 4 1
A23/PCT o) A I AL DQ11 (42 2
A24/pC8 [R50 — A £ 12 Q12 [4 2
A25/PCOICFRNW [-BL—A2— A A13 DQ13 5
15 4 49
A 4 Aua Q14 [e
A 7 ﬁg be1s +3v3
N10_SDRA! A 19
Ras 05 -~ 121 a1z
CAS BC A2 11 A8 R403
SDCK A19 .
speke (22 DeKe] o 124n0 RYBY [a7
sowe I8 —2PFc o 2 N
socsinest [HE—ZF o A22 WPIACC
SDA10 a3
NBSLNWR1/CFIOR [BS1 A 56140, IR
NBSINWRI/CFIOW [-BE— ol
NCSUIBFCS ¢ 2 % vee e
NCsa/sMes [FRI=x 134 We vio
NRDINOE/CFOE {3 “ava —4 RESET 5
NWRO/NWE/CFWE . N (32
BYTE GND
77777777 Ra0L S39GL512N
K7
AT91RM920BGA oo

< RESET

Liab ApS

Dstre Allé 6 - DK 9530 Stgwring
Telefon 98370644 - Fax 98370144
‘Web: www.liab.dk

E-mail: info@liab.dk

Title:

NANOLIAB, MEMORY

144

Ssdy gvI'1

qgvIioueu

[enuey S,19s()]

¢ g ansyg

qgvriounu

¢d

pno puw 9Ly Hod oiiag ‘g pun y 140d OId NdD

‘01

PA[0..31]
[0.31] PA[0..31]
EMINO..17]
EMIO.17] EMI0..17]
+3V3 +3v3
C501 Y501
u2018 10P 32.768KHz
777777777 R502 R501
o 2K2 2K2
1
AT91RM9200 M LR—’AU (|
Gl4 PA: €502
PA1/MOSI/PCKO B,
PA2ISPCK/IRQ4 [-G18—PA: op
PA3/NPCSO/IR85 G165 PA 4 BTL D501 LL4lkg
Ad
PORT A AND PORT Beadinpcsypcki FE13—ern GND | |
PASINPCS2/TXD3
PASpCSaxDs jﬁ_IEM\IG | +3v3 GND KEYSTONES500 D502 LL4148
PATIETXCKIPCK2 [-BH—] cs0 cs0a +3v3
PASIETXENIMCCDB |27, v | /] +3v3 100N 100N
m PAIEXTOMCDBO "5 Fviz_ | /] +3v3 Us04 505
PA10/ETX1/MCDB1 RIS EMIILS 5 100N
PA11/ECRS/MCSB2 Cil+ o
PA12/ERX0/MCDB3 216 E ié 4R:$3 NCTSZISTREX C1- > V+
PA13/ERX1/TCLKO AlS EMI7 n S
PA14/ERXER/TCLK1 R14 EMIILG 5 5 Cc2+ V-
PA15/EMDC/TCLK2 Dia EMIL7 GND VCC Cc2-
PAIG/EMDIO/IRQ6 (21 N 1
PAL7/TXDOTIOAO [B13 10 z TN T10UT
PALBRXDOTIOBO £ S
PALO/SCKOITIOAL [-AK T2IN T20UT
PA20/CTSOTIOBI [FE12—orr 1 .
c PA21/RTSO/TIOA2 PADD R10UT R1IN
PA22/RXD2/TIOB2 [HR12— 722 4 l 2
PA23/TXD2/IRQ3 % TPO s e 9 R20UT © R2IN
PA24/SCK2/PCK1
PAZSTWD/IRQ2 L o Voo rsod . U503 ST32320 SER[0..3]
PA26/TWCK/IRQ1 a1, ;AT K7 Y1 A
PA27/MCCK/TCLK3 F12 ;AT 5
PAZBIMCCDATCLKA FELZ—F750— vce GND
PA29IMCDAOITCLKS [ELL N N
PA30IDRXD/CTS? 1L Yo s G\
PA31/DTXD/RTS2 NC7SZ18P6X_ P4
TP1 R506
I BNG a7 5! ;
PBO/TFO/RTS3 B%g R505 FORCEDEBUG
PB1/TKO/CTS3 10 D503
PB2/TDO/SCK3
PB3/RDO/MCDAL BASES 470R GND GND
PB4/RKO/MCDA2
B9
DA3
C9
e mions e R507 a3 Us0s c500 €510 cs11 cs12 +3v3
D9 B8 | 1K 100N 10U 6V3 100N 47U 6V3 L501 R509
PBSITD1MTIOA [BA—5¢ i 1
PBY/RDL/TIOB4 BE1G BVDD AVDD
o PB1ORRK1TIOAS [HBE—F3T7 6 1T 100H 10R
PB11/RF1/TIOBS 2 X% CLKOUT VMID —_
PBI2TF2IETX2 S8 i 2 seik s T T
PB13/TK2/ETX3 D 10 e DIN AGND
PB14/TD2/ETXER LRCIN SN
PB15/RD2/ERX2 E }:g 27 8 AUGND RS10 OR GND
PB16/RK2/ER: DVDD HPVDD
v 113
PB17/RF2/ERXD'
1114
PB18/RI1/ECOL B:5 EMIL2 / (1305’27 HPGND 1L AUDIOE 5]
PBlg/DTRlz/Sﬁig'i a2 PB20 XT0 |(c513 470 $va AUDIO4 AUDIO0.5]
B4 B21 Y502 1T
PasziSoRl |C4—FBZ2 o8 12MHz LHPOUT
= PB2: AUDI(
PB23iDCD1 [-E2 Bz 0P }—T—ZL XTUMCLK RHPOUT [-2 ILCSM 47U GV3 UDIOS
PB24/CTS1 Pi
PB25/DSR1 EZ)ggg GND 4 [—{ C515 100! AUDIOO PB[0..29]
PB26/RTS1 2 SCLK LLINEIN
PB27/PCKO SDIN RLINEIN J'Q_T_‘l
I 2 | .c516 1008 AUDIO1
PB28/FIQ [PEZ5 221 MoDE F
PB29/IRQO cs 12 AUDIO2
284 pGND RouT £ AUDIO3
———————— Liab ApS
AT91RM920BGA e I a p
TLV320DAC23PW N
A a4K7 R511 R512 Dstre Allé 6 - DK 9530 Stawring
a7 a7 Telefon 98370644 - Fax 98370144
Web: www.liab.dk
DTRL B i
RTSO
RESET D AUGND
PB[0..29]

Sdy gvI'1

qgvIioueu

[enuey S,19s()

117

‘9°q 1nSuy

qgvIounu

9d

sa1yo11ms SqAT ‘dS] ‘d pur D 140d OId 1dD

ATO1RMS200 MICROPROCESSDR |

PORT C
AND
PORT D

AT91RMI20BGA

PC1/BFRDY/SMOE
PC2/BFAVD
PC3/BFBAA/ISMWE
C4/BFOE
PCS/BFWE
PCB/INWAIT

PC10/NCS4/CFCS
PC11/NCS5/CFCE1
PC12/NCS6/CFCE2

PC13/NCS7

PDO/ETX0
PD1/ETX1
PD2/ETX2
PD3/ETX3
PD4/ETXEN
PDS/ETXER
PD6/DTXD
PD7/PCKO
PD8/PCK1
PDY/PCK2
PD10/PCK3

PD15/TDO
PD16/TD1
PD17/TD2
PD18/NPCS1
PD19/NPCS2
PD20/NPCS3
PD21/RTSO
PD22/RTS1
PD23/RTS2
PD24/RTS3
PD25/DTR1

HDPA
HDMA

HDPB
HDMB

DDP
DDM

M14

FEEEEF FEEFE

+3V3 +3V3 +3V3

R603
470R

PD2

PD[0.5]

PD3

PD4

R605
470R

ETHINT
ETHPD

R606
470R

PD5

0| 9| 0| o[5| @
slisifslistis]

FEPFEEEEEEE e

T
S

i

b
=3

>RTS0

USB[0.5)

>DTRL

R607 22R

UsBo

It

K1

C601 4
GND

7P
R609 22R R608 15K

K3

USBL

C602 47P
GND

R611 22R R610 15K

usB2

C603 4
GND

7P
R613 22R R612 15K
UsB3

C604 47
GND

7P
R614 15K

R615 22R

usB4

47P_C605
GND }—«i

27P_C606
GND }—«i

R616 22R

UsB5

USB[0..5]

Liab ApS

Dstre Allé 6 - DK 9530 Stgwring
Telefon 98370644 - Fax 98370144
‘Web: www.liab.dk

E-mail: info@liab.dk

Title: NANOLIAB, PORT C, D AND USB

T 5

i%

Ssdy gvI'1

qgvIioueu

[enuey S,19s()]

g anSuy

qgvrounu

,d

KHJ 1oUL0y37

+3v3 +3v3
33 e
R705 R706
10K 470R
R70L
D5
aK7 LED,GREEN
EMI[0..17] 2.2
) NI
N L701 R710 R711 c710 PHY[O.S
T0UH 49R9 49R9 100N 0.5]
d 4 o
uroL ETHGND
EMIIO 16 2 o o g
NI 2 xoamxerR 8 § 8 8 ;
EMII2 18 TXD3 > > > >TX+
EMI3 TXb2
191 %01 ™ &
EMII4 0 -
EMI5 Txbo
21
EMIIG 2o | TXEN
TXCLK/ISO 3
RX+
EMIZ
EMIE 28 RXERRIRXDA.. R [
RXD3
EMI
EMILO §§ ;igf R712 R713
EMILL R 49R9 49R9
22 RxDo CoLLED/OPO [HH—x
EMIIL2 RXEN SPEEDLED/OP1 {%—X
1ava RXCLK!.. ACTLEDIOP2
~—EMI13 37 |
EEIEE] RXDV/. CABLETST [H4—x
c711 cr2
EMIL4 100N 100N
R702 0 R703 EMi15 25| QLRI BGRESG Rio7 R708
e
K2 > 2K2 P P ETHGND ETHGND
BGRES
EMIL6 24
EMIIL7 25 mg% ETHVDD +3v3
ETHINT <} GHD MDINTR AvoD H——p T L702
AVDD g
4 AVDD 10UH
2o | X1 c707 c708 c709
xT2 100N 100N 100N
" AGND 2
RESET ToJRESET 2 2 2 AGND [~
ETHPD PWRDOWNG ® & AGND
DM9161 ETHGND
Y701
2
4K7
[
C705 == 25MHz C706 GNDGNDGND

22P 22P

GND GNI

S}

+
)
<
&

701
00N

i

N

c702 _I_ c703 _L c704
100r 100N 100N

e

9,
Z|
S}

GND

MAKE A SEPARATE GROUND PLANE FOR AGND I N
AREA

THS

PLACE C307/ C308/ C309
CLOSE TOPIN 1, 2 AND 9

PLACE €301, €302, C303 AND C304
CLOSE TO PINS 23, 30, 39 AND 41.

Liab ApS

@stre Allé 6 - DK 9530 Stewiing
Telefon 98370644 - Fax 98370144
‘Web: www.liab.dk

Sdy gvI'1

qgvIioueu

[enuey S,19s()

Ly

48

LIAB ApS: nanoLIAB: User’s Manual

Z IP3 8 2 JP1 76
i 7 1 25
P3
[PS BTL
NANOLIAB V1.1
FHR 17.0KT.2006
LIAB ApS

VISIT HTTP

SW1 O

P4

://WWW.LIAB.DK
D4

D3 D2 D1

SW2 SW3 ;‘
OJlO] ¢

TPOTP1
P1

JP2 36

39

Figur B.8: nanoLIAB:

Component placement page 1: Top.

LIAB ApS: nanoLIAB: User’s Manual

a O
nsoz g]8 s
S nso¢
sl
=] =@ T
S B20T - B K1 B
2 saos|uvoi]csio] [es12] EEE
csie HAH
=] @) 3|23
g CcsSt M M H .
]
5 EEEHEHE
3 HHE AT
8
= [-13Y ceoz § § E
3 Slals
%‘ neo1 ol rozA
n¢os ° HHEHHEE
e aaos |S]3]|S[a)20T
b3 wjolx|xn +
=3 -
2
<}
3 2
=1 =10 3 -
@l o318 8 u
4 wlals 19
E1 S |[eoza
a
5403 H + ¥
= 3
=] a
= o
slsk: afrozo] 8| =
naor 3lals 3 5|8
s S |eoza =
(=1 1=
g Sl
4] o [c202
€10 E ool azor [B2°F
L caoe @ | — c2it
B -
o cioslgeoe| S B210
@ nsor €201
[H |4] czro

Figur B.9: nanoLIAB: Component placement page 2: Bottom.

49

	Editorial Notes (read this first)
	Introduction
	The Concept

	The nanoLIAB Hardware
	The nanoLIAB Microprocessor Board
	Board Layout
	Power Supply
	Standard Connectors P2-P5
	LEDs and Switches
	Pin Headers JP1 to JP3

	Get your Board Up and Running
	Required Items
	Unpacking and Serial Connection
	Start a Terminal Emulator and Apply Power!
	Network Configuration: Send Three Dots

	The LIAB Distribution
	Installing the Distribution
	Installing the Cross Compiler
	Contents of the Distribution
	Demo program for the LIAB
	Loading the nanoLIAB Module
	The Board Control Program: nanoctrl
	A demo program using the module nanomod

	The Boot Loader
	Three Dots Received ...
	No Dots Received ...
	Download of Binary Images

	MTD and JFFS2
	Memory Technology Devices, MTD
	Journalling FLASH File System 2, JFFS2

	Bibliography
	Links
	Using cu as terminal emulator
	Schematics and Layout
	nanoLIAB: Block diagram
	nanoLIAB: Power supply
	nanoLIAB: Reset and Oscillators
	nanoLIAB: CPU, FLASH and SDRAM memory
	nanoLIAB: CPU PIO A and B, serial, RTC, Audio
	nanoLIAB: CPU PIO C and D, USB, LEDs, switches
	nanoLIAB: Ethernet PHY

